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Lattice effective field theory 
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We will be discussing several different Monte Carlo algorithms.  It is 
useful to review the elements and theory of Markov chains.  Consider 
a chain of configurations labeled by order of selection.  We call this 
integer-valued label the computation step. 

Let us denote the probability of selecting configuration A at 
computation step n as 

Markov chain Monte Carlo 

Suppose we have selected configuration A at computation step n.  The 
probability that we select configuration B at computation step n + 1 
is denoted 
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This transition probability is chosen to be independent of n and 
independent of the history of configurations selected prior to selecting 
A at computation step n.  This defines a Markov chain. 

We note that 
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We now define the notion of ergodicity.  Suppose we are at 
configuration A at computation step, n.  Let SA be the set of all 
positive integers m, such that the return probability to A is nonzero 



If the set SA is not empty, then we say that A is positive recurrent.  If 
the greatest common divisor of the set of integers in SA is 1, then we 
say that A is aperiodic.  If all of the configurations connected by the 
Markov chain are recurrent and aperiodic, then the Markov chain is 
said to be ergodic.  If the Markov chain is ergodic and all 
configurations are connected by the graph of nonzero transitions in the 
Markov chain, then there is a unique equilibrium distribution that is 
reached in the limit of large number of computation steps that is 
independent of the initial conditions. 
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Detailed balance 

We want the equilibrium probability distribution to be  

One way to do this is to require  

for every pair of configurations A and B.  This condition is called 
detailed balance. 
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If the Markov chain is ergodic and all configurations are connected, 
then after many computation steps we reach the unique equilibrium 
distribution, which satisfies the stationary condition 



for all configurations A. 

Comparing with the detailed balance condition, we conclude that 
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One popular method for generating the desired detailed balance 
condition is the Metropolis algorithm  
 
Metropolis, Teller, Rosenbluth, J. Chem. Phys. 21 (1953) 1087  

Metropolis algorithm 



Usually the transition probability can be divided in terms of a 
proposed move probability and an acceptance probability, 

And quite often the proposed move probability is symmetric 

However this does not need to be the case.  One can design useful 
algorithms where there is some guiding involved in the proposed 
moves.  It is also not necessary that you use only one type of  
update. If you maintain detailed balance for each type of update 
process, then you also recover the target probability distribution. 
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Once your Markov chain is set up properly, you can now compute  
observables such as 

by computing the average  

for large N from your Markov chain.  However you can also do some 
reweighting and sample the Markov chain according to some other 
probability distribution qtarget(A).  This may be necessary if ptarget(A) is 
not positive semi-definite and so cannot be treated as a probability 
distribution.  In that case you can for example take  
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With the reweighted Markov chain, you then compute averages using 
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Free scalar quantum field on the lattice 

We consider a relativistic free scalar quantum field in 3 + 1 dimensions, 
three spatial dimensions plus time.  We work in Euclidean space where time 
t is replaced by Euclidean or imaginary time x4.  

The Euclidean action for the free scalar field is 

where 

Rothe, Lattice Gauge Theories, Second Edition,  
World Scientific Lecture Notes in Physics, Vol. 59, 1997 
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We can calculate any expectation value of products of quantum fields 
by computing the ratio of path (or functional) integrals 

where the path integral measure is  

We now put this system on a lattice with periodic boundary conditions   
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where 

To simplify the notation further we redefine the fields and mass 
parameter multiplied by the lattice spacing to render it dimensionless. 

The Euclidean time duration, Lta, will be the inverse temperature β. 
On the lattice we also make the replacements 

17 



Then the expectation value of products of quantum fields can be 
written as 

where 

We can also write 
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where 

Using this notation, the two-field expectation value called the Euclidean 
propagator is given by 

Kn,m is a symmetric positive-definite matrix which only depends on the 
vector difference n – m.  We can compute the square root and define 

We can also invert to get 
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We now do a change of variables in the path integration and get 

It is straightforward to calculate the second moments of this simple 
Gaussian distribution 
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The Euclidean propagator is then  

In order to compute this inverse matrix, we first compute the Fourier 
transform of 

and get the momentum-space function 
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To convert back to coordinate space, we compute the inverse Fourier 
transform 
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The allowed momentum modes on the lattice in our periodic box are 

and we can construct the inverse matrix as 



We conclude that the Euclidean propagator is  
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We can check that this definition is in fact the matrix inverse   



Exercise 

Use a Markov chain Monte Carlo simulation to compute the Euclidean  
propagator for a real scalar field on the lattice in 3 + 1 dimensions. 

Take the size of the periodic box to be L = Lt = 10 and also set 

Check that your simulation gives the same result as the expression  

24 



we had derived analytically 

for the cases where the separation between n and m is pointing along  
the x-axis:    
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